首页> 外文OA文献 >A cascade of deep learning fuzzy rule-based image classifier and SVM
【2h】

A cascade of deep learning fuzzy rule-based image classifier and SVM

机译:深度学习基于模糊规则的图像分类器和SVM的级联

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In this paper, a fast, transparent, self-evolving, deep learning fuzzy rule-based (DLFRB) image classifier is proposed. This new classifier is a cascade of the recently introduced DLFRB classifier and a SVM based auxiliary. The DLFRB classifier serves as the main engine and can identify a number of human interpretable fuzzy rules through a very short, transparent, highly parallelizable training process. The SVM based auxiliary plays the role as a conflict resolver when the DLFRB classifier produces two highly confident labels for a single image. Only the fundamental image transformation techniques (rotation, scaling and segmentation) and feature descriptors (GIST and HOG) are used for pre-processing and feature extraction, but the proposed approach significantly outperforms the state-of-art methods in terms of both time and precision. Numerical experiments based on a handwriting digits recognition problem are used to demonstrate the highly accurate and repeatable performance of the proposed approach after a very shorting training process.
机译:本文提出了一种快速,透明,自我发展的深度学习基于模糊规则(DLFRB)的图像分类器。该新分类器是最近推出的DLFRB分类器和基于SVM的辅助工具的级联。 DLFRB分类器是主要引擎,可以通过非常短,透明,高度可并行化的训练过程来识别许多人类可解释的模糊规则。当DLFRB分类器为单个图像生成两个高度可靠的标签时,基于SVM的辅助功能将充当冲突解决程序。只有基本的图像变换技术(旋转,缩放和分割)和特征描述符(GIST和HOG)用于预处理和特征提取,但是在时间和时间方面,所提出的方法明显优于最新方法。精确。基于手写数字识别问题的数值实验被用来证明该方法在非常短的训练过程之后的高度准确和可重复的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号